Uncertain Fractional Order Chaotic Systems Tracking Design via Adaptive Hybrid Fuzzy Sliding Mode Control

نویسندگان

  • T. C. Lin
  • C. H. Kuo
  • V. E. Balas
  • Tsung-Chih Lin
  • Chia-Hao Kuo
  • Valentina E. Balas
  • Aurel Vlaicu
چکیده

Abstract: In this paper, in order to achieve tracking performance of uncertain fractional order chaotic systems an adaptive hybrid fuzzy controller is proposed. During the design procedure, a hybrid learning algorithm combining sliding mode control and Lyapunov stability criterion is adopted to tune the free parameters on line by output feedback control law and adaptive law. A weighting factor, which can be adjusted by the trade-off between plant knowledge and control knowledge, is adopted to sum together the control efforts from indirect adaptive fuzzy controller and direct adaptive fuzzy controller. To confirm effectiveness of the proposed control scheme, the fractional order chaotic response system is fully illustrated to track the trajectory generated from the fractional order chaotic drive system. The numerical results show that tracking error and control effort can be made smaller and the proposed hybrid intelligent control structure is more flexible during the design process.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Observer Based Fuzzy Terminal Sliding Mode Controller Design for a Class of Fractional Order Chaotic Nonlinear Systems

This paper presents a new observer based fuzzy terminal sliding mode controller design for a class of fractional order nonlinear systems. Robustness against uncertainty and disturbance, the stability of the close loop system and the convergence of both the tracking and observer errors to zero are the merits of the proposed the observer and the controller. The high gain observer is applied to es...

متن کامل

Adaptive fuzzy sliding mode control for synchronization of uncertain fractional order chaotic systems

This paper deals with chaos synchronization between two different uncertain fractional order chaotic systems based on adaptive fuzzy sliding mode control (AFSMC). With the definition of fractional derivatives and integrals, a fuzzy Lyapunov synthesis approach is proposed to tune free parameters of the adaptive fuzzy controller on line by output feedback control law and adaptive law. Moreover, c...

متن کامل

Fractional order robust adaptive intelligent controller design for fractional-order chaotic systems with unknown input delay, uncertainty and external disturbances

In this paper, a fractional-order robust adaptive intelligent controller (FRAIC) is designed for a class of chaotic fractional order systems with uncertainty, external disturbances and unknown time-varying input time delay. The time delay is considered both constant and time varying. Due to changes in the equilibrium point, adaptive control is used to update the system's momentary information a...

متن کامل

ADAPTIVE BACKSTEPPING CONTROL OF UNCERTAIN FRACTIONAL ORDER SYSTEMS BY FUZZY APPROXIMATION APPROACH

In this paper, a novel problem of observer-based adaptive fuzzy fractional control for fractional order dynamic systems with commensurate orders is investigated; the control scheme is constructed by using the backstepping and adaptive technique. Dynamic surface control method is used to avoid the problem of “explosion of complexity” which is caused by backstepping design process. Fuzzy logic sy...

متن کامل

DIRECT ADAPTIVE FUZZY PI SLIDING MODE CONTROL OF SYSTEMS WITH UNKNOWN BUT BOUNDED DISTURBANCES

An asymptotically stable direct adaptive fuzzy PI sliding modecontroller is proposed for a class of nonlinear uncertain systems. In contrast toother existing approaches of handling disturbances, the proposed approachdoes not require this bound to be known, only requiring that it exists.Moreover, a PI control structure is used to attenuate chattering. The approachis applied to stabilize an open-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011